Average unit cost of installing light rail in street/arterial alignments

Left: Phoenix LRT in arterial alignment. Right: Houston LRT in street alignment. Photos: L. Henry.

Left: Phoenix LRT in arterial alignment. Right: Houston LRT in street alignment. Photos: L. Henry.

Increasingly, interest has been growing in the use of street and arterial roadway rights-of-way (ROW) as alignments for new light rail transit (LRT) segments – either new-start systems or extensions to existing systems. As planners, other professionals, advocates, and civic leaders consider such projects, it’s useful to have reliable data on the installation costs.

Unfortunately, many available “average unit cost” methodologies present averages based on various types of alignment — such as re-purposed railroad ROW – rather than exclusively or predominantly street/arterial corridors, which present quite specific needs, challenges, and costs with respect to installation of LRT. For example, while railroad ROWs typically need rehabilitation, much of the necessary preparation for LRT tracklaying is usually in place; space and installations costs for overhead contact system (OCS) infrastructure and stations are often easier to deal with. On the other hand, installing LRT tracks, stations, and electrical systems in streets/arterials typically requires extra (and more costly) tasks such as pavement removal, subsurface utilities relocation, traffic management and reconfiguration, and other measures.

The brief study described in this post has been undertaken as an effort toward fulfilling the need for reliable total-system unit cost data for street/arterial LRT project installations. It has focused on predominantly (or exclusively) street/arterial LRT projects, drawing upon data from eight specific projects in five U.S. cities (Salt Lake City, Houston, Portland, Phoenix, and Minneapolis) as listed in the table further below.

Also, this study (conducted by LRN technical consultant Lyndon Henry) has endeavored to avoid carelessness as to what is designated as “light rail”. As it has been most pervasively considered since the 1970s, LRT is regarded to be an electrically powered mode, not a light diesel-powered regional railway. For the purposes of this study, LRT has been considered as both electrically powered and operating predominantly in exclusive or reserved alignments (i.e., streetcar-type systems have been excluded).

Analysis of this data has yielded an average capital cost of $85.5 million per mile ($53.0 million per kilometer) for construction in these kinds of alignments. This figure might be considered appropriate for approximating system-level planning cost estimates for corridors considered possible candidates for LRT new starts or extensions. (Capital costs, of course, may vary significantly from corridor to corridor depending on specific conditions, infrastructure needs, service targets, and other factors.)

It should be noted that these data have been primarily drawn from Federal Transit Administration resources (particularly New Start profile reports), supplemented where necessary by data from Light Rail Now and Wikipedia. Because these figures present final total capital cost data, they represent final year-of-expenditure costs, including infrastructure and vehicle requirements, and incorporate other typical ancillary cost items such as administration, engineering, contingencies, etc.

Capital costs for the eight projects were tabulated as shown in the table below.


Relevant data for 8 LRT segments used in study. (Click to enlarge.)

Relevant data for 8 LRT segments used in study. (Click to enlarge.)


NOTES

Portland: Interstate (Yellow) line data include section at outer (northern) end on viaduct over Columbia Slough and flood plain. Phoenix: Initial project data include new LRT bridge over Salt River, and short section on abandoned Creamery Branch of Southern Pacific Railroad. Minneapolis: Green line data include adaptation of roadway bridge over Mississippi River.

It should also be recognized that the design requirements and installation costs of streetcar-type LRT projects average significantly lower than those of rapid or interurban-type LRT, particularly because of several factors. For example, streetcar alignments predominantly share street/arterial lanes with existing motor vehicle traffic. Stations often consist of simple “bulge-outs” from adjacent sidewalks, and are typically designed for single-car trains (i.e., single vehicles) rather than multi-car LRT trains. Also, the lighter static and dynamic loading requirements of some streetcar configurations facilitate the use of lower-cost “shallow slab” construction rather than the deeper excavation more typical of “heavier” LRT designs.

Capital costs and line lengths were aggregated for all eight LRT cases studied. Results are presented in the table below:


Data and calculation of average LRT project cost in street/arterial alignments.

Data and calculation of average LRT project cost in street/arterial alignments.


Hopefully, the information from this study will be helpful in developing realistic cost estimates for new LRT projects in these types of alignments. ■

Austin: Support for “Plan B” urban rail in Guadalupe-Lamar corridor advances

Proposed design for dedicated light rail alignments, retaining 4 lanes of traffic, could resemble San Francisco's Muni Metro N-Judah light rail alignment in Judah St., seen here near 16th Ave. Photo: (copyright) Eric Haas.

Proposed design for dedicated light rail alignment in Austin’s Guadalupe-Lamar corridor, retaining 4 lanes of traffic, could resemble San Francisco’s Muni Metro N-Judah light rail alignment in Judah St., seen here near 16th Ave. Photo: (copyright) Eric Haas.

Austin, Texas — Community support is mounting to apply millions of dollars in available municipal funds to resume the decades-old planning for light rail transit (LRT) in the city’s Guadalupe-Lamar corridor, described in a recent Austin Rail Now (ARN) posting as Austin’s “most central north-south corridor, with by far the heaviest travel and congestion.”

Several possible route plans for LRT in the corridor have been suggested. As this blog reported in November, one of these, proposed by ARN, would stretch 6.8 miles, with a short link to the city’s developing Seaholm-Amtrak station site, for a capital cost of $586 million.(See map below.)


Annotated map of proposed Guadalupe-Lamar LRT line shows various major activity and population points served, as well as connection to Seaholm-Amtrak site. Map: Austin Rail Now.

Annotated map of proposed Guadalupe-Lamar LRT line shows various major activity and population points served, as well as connection to Seaholm-Amtrak site. Map: Austin Rail Now.


In a December posting, ARN presented a proposed design to install dedicated LRT tracks in North Lamar Blvd. and Guadalupe St., while retaining four lanes of traffic as well as sidewalks for pedestrians and bicycles. Modeled after San Francisco’s Muni Metro N-Judah LRT route in Judah St., the design shows how an effective LRT line could work within what is mostly an 80-foot-wide right-of-way. (See photo at top of this post and graphic of cross section below.)


Cross-section of proposed LRT line, showing dedicated track alignment, 4 lanes of traffic, clearances, and facilities for pedestrians and bicycles. Graphic: ARN.

Cross-section of proposed LRT line, showing dedicated track alignment, 4 lanes of traffic, clearances, and facilities for pedestrians and bicycles. Graphic: ARN.


Widespread community support for such an urban rail line in this high-traffic, dense central corridor is evident. The crucial task is to gain official cooperation. But, warns ARN in a posting earlier this month, despite this community backing, a long history of previous study of the corridor, and suggestions for route and design options, key local officials “seem to have been struck blind and deaf, oblivious to the obvious feasibility of LRT in the city’s most central and heavily used local corridor.”

On the other hand, a recent major overhaul in Austin’s local government, reorganizing how councilmembers are elected and installing entirely new representatives, may open the possibility that things will change. As ARN‘s article asks,

Will a new mayor and a new district-based 10-1 City Council provide an opportunity to scrap this modus operandi of failure and disaster, bring the community into authentic involvement in crucial decisions, and move forward with the first phase of LRT as a starter line in Guadalupe-Lamar?

This is a developing saga worth following… ■

Austin: As urban rail vote fails, campaign for Plan B light rail rises

"Plan B" is a 6.8-mile light rail starter line route for Austin's most central inner-city local corridor. It was originally proposed as a more feasible alternative to the official "urban rail" plan, defeated on Nov. 4th. Map graphic: Austin Rail Now.

“Plan B” is a 6.8-mile light rail starter line route for Austin’s most central inner-city local corridor. It was originally proposed as a more feasible alternative to the official “urban rail” plan, defeated on Nov. 4th. Map graphic: Austin Rail Now.

Austin, Texas — In a somewhat astonishing victory, on November 4th the city’s most dedicated, experienced, and knowledgeable rail transit advocates — including leaders of the Light Rail Now Project — helped defeat an officially sponsored rail transit plan that they said would waste resources on a very weak route and actually set back rail transit development in the community. See: Austin: With flawed “urban rail” plan now on ballot, debate heats up.

Produced by a consortium of several public agencies called Project Connect, the official plan — designated “urban rail” but in fact deploying light rail transit (LRT) technology — proposed a 9.5-mile route connecting the declining Highland Mall shopping center on the city’s north side (also a site being developed as a new Austin Community College campus) to the East Riverside corridor in the southeast. While the proposal was projected to have an investment cost of $1.4 billion in 2020, Austin’s City Council placed a $600 million General Obligation bond measure on the ballot as the local share, in hopes that the remainder would be covered by federal grants and other undisclosed sources.

It was that bond measure that was defeated, by a 14-point margin, 57%-43% — a stunning triumph for opponents, outspent 2-to-1 by a powerful coalition of the core of Austin’s business and predominantly Democratic political leadership, who also managed to enlist the support of major environmental, liberal, New Urbanist, and other “progressive” leaders. But a coalition of transit advocates and many other community and neighborhood activists otherwise inclined to support rail transit vehemently opposed the plan, objecting to what many perceived as a scheme that ignored crucial mobility needs in deference to real estate development interests. Many community members also felt excluded from what was depicted as a “fraudulent” process that had engendered the proposal. See: The fraudulent “study” behind the misguided Highland-Riverside urban rail plan.

For analyses of the campaign and defeat of the Highland-Riverside rail plan, see:

Austin: Flawed urban rail plan defeated — Campaign for Guadalupe-Lamar light rail moves ahead

Lessons of the Austin rail bond defeat

Austin urban rail plan: Behind voters’ rejection

Austin urban rail vote fails, alternative light rail plan proposed


With Austin's most powerful business leadership, mass media, and Democratic Party-dominated political leadership arrayed against them, grassroots rail advocates, community activists, and neighborhood groups opposing the official "urban rail" proposition seemed to face overwhelming odds. Graphic via TheKnowNothingNerd.com.

With Austin’s most powerful business leadership, mass media, and Democratic Party-dominated political leadership arrayed against them, grassroots rail advocates, community activists, and neighborhood groups opposing the official “urban rail” proposition seemed to face overwhelming odds. Thus defeat of the official “urban rail” plan on Nov. 4th was an amazing upset. Graphic via TheKnowNothingNerd.com.


While the defeat of the City’s official plan might be seen as one step back, it could well lead to several steps forward in the form of a new “Plan B” LRT starter line in the central city’s heaviest-travel local corridor, potentially making far more sense to voters and attracting much broader support. This route, original proposed in the 1970s and intensively studied since the 1980s (and very narrowly defeated by less than 1% of voters in a 2000 regional referendum), follows the major arterials North Lamar and Guadalupe Street, serving increasing residential density and commercial activity in the corridor including the West Campus area adjacent to the University of Texas campus, with the third-highest residential density in Texas.

Various alternatives for a light rail starter line to serve this corridor are possible; one prominent example is a plan recently proposed by Austin Rail Now (ARN, a coalition of rail supporters including the Light Rail Now Project). As illustrated by the annotated map at the top of this post, this proposal envisions a 6.8-mile line, running from the North Lamar Transit Center (at U.S. 183) to the city’s Core Area (comprising the UT campus, Capitol Complex, and Central Business District). Along the way, it would provide a connection to the MetroRail diesel-multiple-unit-operated regional rail passenger service at the Crestview station (also a major development site), and important the Triangle multi-use development further south.

This plan also includes a branch stretching west to a new urban development site located at the former Seaholm electric power plant and current Amtrak intercity train station (at the western edge of the CBD). See: A “Plan B” proposal for a Guadalupe-Lamar alternative urban rail starter line.

With 17 stations and a fleet of 30 LRT railcars, ARN’s Plan B is designed to carry daily ridership of as many as 30,000 to 40,000 rider-trips — a figure derived from federally funded studies of the 2000 proposal, and roughly two to three times as much ridership as was likely for the now-defunct Highland-Riverside scheme. Yet, at a projected $586 million, and with no major civil works along the Guadalupe-Lamar corridor, it would have roughly half the investment cost, and an affordability likely to be more appealing to voters.

Furthermore, a cost-effective and financially doable starter line located in Austin’s centralmost and most heavily traveled inner-city local corridor could plausibly serve as the central axis or trunk of a far larger citywide LRT system, with lines branching into many other neighborhoods and outlying communities.


LRT in Austin's North Lamar and Guadalupe corridor could resemble Portland's Yellow Line on Interstate Avenue, shown here. Photo: Peter Ehrlich.

LRT in Austin’s North Lamar and Guadalupe corridor could resemble Portland’s Yellow Line on Interstate Avenue, shown here. Photo: Peter Ehrlich.


Supporters hope that this illustration of a Plan B LRT concept for Guadalupe-Lamar will provide a spark to re-kindle an official rail planning process that truly makes sense. Key to any plan for expansion of transit in Austin is acceptance of the need for re-allocating some street space — and traffic lanes — to dedicated transit use, and this policy is included in the proposal.

Most important, unlike the defeated urban rail proposal, a Plan B LRT on Guadalupe-Lamar seems to be an initiative that comes from the community itself. That’s an excellent ingredient for success. ■

New streetcar startups bringing rail transit to more U.S. cities

xxxxxxxxxxx

Tucson’s new Sun Link streetcar passes sidewalk cafe during opening day festivities in July 2014. Photo: Ed Havens.

Light rail transit (LRT) continues to sprout across the USA, driven especially by the lower cost and easier implementation of streetcar-type LRT technology. Listed below are several U.S. cities where new streetcar systems either have recently opened, or projects are under way, bringing the first rail transit in the modern era to these metro areas. Links to helpful articles providing further information are provided, as available.

Tucson

This medium-sized Arizona city’s 3.9-mile streetcar line, branded Sun Link, opened this past July, at an investment cost of $198.8 million. The starter line route links up the University of Arizona campus with important activity points like Main Gate Square, the Fourth Avenue business district, and downtown Tucson, continuing westward to the Mercado area west of Interstate 10. Ridership (averaging over 4,700 on weekdays) has already surpassed projections. See: Tucson Sun Link streetcar opens, meets ridership goal.

Cincinnati

This midwestern city’s streetcar project, now in the advanced stages of construction, will install a 3.6-mile loop (1.8 miles of route from one end to the other) in the CBD. The $133 million starter line will stretch from The Banks to Findlay Market, and is projected to open for service in the fall of 2016. See: CincyStreetcar Blog.

Kansas City

This 2.2-mile starter streetcar line will operate mostly along Main Street through the CBD, connecting River Market with Union Station. Budgeted at $102 million in 2012, the project is well under way. Construction began in May 2014, and the line is expected to open for passenger service in late 2015. See: Kansas City — Another new downtown streetcar project starts to take shape.

Oklahoma City

A 4.6-mile streetcar starter line, now in advanced planning, will bring rail transit to this major city. The project, currently estimated to cost $128.8 million, will circulate through the CBD, and will feature wireless operation beneath the BNSF Railway overpass linking the city’s MidTown area with the historic and adjoining Bricktown district. Opening is projected for late 2017 or early 2018. See: Oklahoma City Rail Transit and Public Transport Developments.

Milwaukee

The City has a 2.1-mile streetcar starter line project under way with a budgeted investment cost of $64.6 million. Extending from Ogden & Prospect on the northeast of the CBD to 4th & Wisconsin, completion has been targeted for 2016. However, the City may have to find an additional $20 million to cover the cost of utilities relocation, under a recent ruling by the Wisconsin Public Service Commission. See: Milwaukee aiming to start streetcar line construction in 2014.

Detroit

In September, tracklaying finally began for this 3.3-mile, $136 million streetcar starter line, financed from both public and private sources. Designated M-1, the line will operate on busy Woodward Avenue, from Grand to Congress. See: Detroit’s M-1 modern streetcar project gets under way. Opening is projected for 2016. See: Detroit’s M-1 modern streetcar project gets under way. ■

New U.S. light rail transit starter systems — Comparative total costs per mile

LEFT: LA Blue Line train emerging from tunnel portal. (Photo: Salaam Allah.) RIGHT: Norfolk Tide LRT train on single-track railroad roght-of-way. (Photo: Flickr.)

LEFT: LA Blue Line train emerging from tunnel portal. (Photo: Salaam Allah.) RIGHT: Norfolk Tide LRT train on single-track railroad right-of-way. (Photo: Flickr.)

This article has been updated to reflect a revision of the LRN study described. The study was revised to include Salt Lake City’s TRAX light rail starter line, which was opened in late 1999.

What’s been the been cost per mile of new U.S. light rail transit (LRT) “starter systems” installed in recent years?

The Light Rail Project team was curious about this, so we’ve reviewed available data sources and compiled a tabulation comparing cost-per-mile of “heavy-duty” LRT starter systems installed in or after 1990, all adjusted to 2014 dollars for equivalency. (“Heavy-duty” distinguishes these systems from lighter-duty streetcar-type LRT projects.)

This is shown in the figure below, which presents, for each system, the year opened, the initial miles of line, the cost per mile in millions of 2014 dollars, and comments on significant construction features. (“RR ROW” refers to available railroad right-of-way; “street track” refers to track embedded in urban street pavement, almost invariably in reserved lanes or reservations.)

2_LRN_US-LRT-starter-lines-cost-per-mi_rev2

Major data sources have included TRB/APTA 8th Joint Conference on Light Rail Transit (2000), individual LRN articles, and Wikipedia.

Averaging these per-mile cost figures is not meaningful, because of the wide disparity in types of construction, ranging from installation of ballasted open track in railroad right-of-way (lowest-cost) to tunnel and subway station facilities (highest-cost). These typically respond to specific conditions or terrain characteristics of the desired alignment, and include, for example:

Seattle — While Seattle’s Link LRT is by far the priciest system in this comparison, there are explanatory factors. Extensive modification of existing Downtown Seattle Transit Tunnel (and several stations) previously used exclusively by buses; tunneling through a major hill, and installation of a new underground station; extensive elevated construction to negotiate hilly terrain, major highways, etc.

Dallas — This starter system’s costs were pushed up by a long tunnel beneath the North Central Expressway (installed in conjunction with an ongoing freeway upgrade), a subway station, a new viaduct over the Trinity River floodplain, and significant elevated construction.

Los Angeles — The Blue Line starter system included a downtown subway station interface with the Red Line metro and a short section of subway before reaching the surface of proceed as street trackage and then open ballasted track on a railroad right-of-way.

St. Louis — While this system’s costs were minmimized by predominant use of former railroad right-of-way, a downtown freight rail tunnel was rehabilitated to accommodate the system’s double-track LRT line, with stations; an existing bridge over the Mississippi River was adapted; and significant elevated facilities were installed for access to the metro area’s main airport.

Hopefully this cost data may be helpful to other communities, in providing both a “ballpark” idea of the unit cost of new LRT, and a reality check of any estimated investment cost already rendered of such a new system. ■

New subway (metro) systems cost nearly 9 times as much as light rail

Buffalo's LRT 6.4-mile system, with 5.2 miles (81%) in subway, has not been expanded since its opening in 1985. Photo: Buffalo Tourism.

Buffalo’s 6.4-mile LRT system, with 5.2 miles (81%) in subway, has not been expanded since its opening in 1985. The high cost of subway construction is a likely factor. Photo: Buffalo Tourism.

Before the surface electric urban railway (the technology of former streetcar and interurban systems) was reborn as light rail transit (LRT) in the mid-1970s, North American urban areas that wanted urban rail for their inner cities really didn’t think there was any choice other than a full subway-elevated system — rail rapid transit, aka a metro system.

But not only was the expense of such a system daunting, and way above the financial capability of most moderate-sized and smaller American cities, its tremendous capacity generally wasn’t needed for cities just trying to get their feet wet with better-quality public transit.

Then, LRT as an option began to emerge, unveiled with maximum force at the first National Light Rail Conference of the Transportation Research Board (TRB) in 1975, and … ka-boom! Urban rail systems in the form of lower-cost LRT began to sprout up in city after city. And they’ve been widely hailed as a great success and model for good urban public transport.

But the “why not a subway?” issue keeps rearing its head — mainly reflecting the resistance of the motor-vehicle-focused mindset to having urban space, especially street space, shared or usurped by mass transit operations. Overwhelmingly, surface LRT in one type of alignment or another (from street reservations to the re-use of abandoned railway corridors) has triumphed … although there have been cases where pressure to “build it out of sight” has forced new LRT startups underground (or even canceled planned projects altogether).

The tremendous investment cost of digging a subway and installing underground stations is obviously a huge deterrent to the development of such systems — both in the initial financing, and in sopping up available resources that could otherwise be plowed into vigorous expansion of the system. Buffalo’s 6.4-mile LRT line, for example, was constructed almost entirely (81%) in subway … and hasn’t been expanded one foot since its original opening in 1985.

One should keep in mind that the cost of more modest local projects (such as wastewater tunnels or similar smaller tunnels) can be very deceptive. Rail transit subways involve far more complex features (after all, they must provide environments to enable large numbers of human beings to survive underground safely and comfortably). There must be ventilation and lighting, of course, and often air-conditioning. More significantly from a cost standpoint, underground stations are extremely expensive, including access (elevators and escalators designed to convey large volumes of passengers rapidly up and down). Access for trains to get from the surface into the subway can also be expensive, typically involving portals spanning up to two city blocks and lengthy underground approach ramps to and from the level main subway alignment.

Nevertheless, from one city to another, subway enthusiasts (or, often, anti-rail Road Warriors seeking to tie a subway albatross around the neck of local rail planning) continue to emerge from time to time claiming that subway construction would cost only “slightly more” (or sometimes, even, “no more”) than installing a new urban rail line in public streets.

So a solid fact check is in order. After considerable investigation, the study summarized here has gathered a selected assortment of recent urban rail projects (all from the 2000s), either completed or well under construction and fully budgeted. A major and very helpful source has been Comparative Subway Construction Costs, Revised from the Pedestrian Observations blog, including data cited in comments. Additional data has come from Tramways & Urban Transit magazine (hardcopy only), September 2013 through February 2014 issues, data in Light Rail Now, Wikipedia, and the research study Comparative examination of New Start light rail transit, light railway, and bus rapid transit services opened from 2000, co-authored by Lyndon Henry and Dave Dobbs, and presented in November 2012 to the 12th National Light Rail Transit Conference in Salt Lake City, sponsored by the TRB and American Public Transportation Association (APTA).

In this cost comparison, only full subway projects (entirely or nearly totally underground) are included. These also include LRT subways (e.g., San Francisco’s Central Subway, and underground LRT projects in Seattle). LRT projects are exclusively (or nearly so) in street alignments (e.g., San Francisco’s T-Line, Salt Lake City’s University line), and involve full-capability, high-performance LRT rather than streetcar technology. In some cases (e.g., Houston, Phoenix, Minneapolis), construction may include short segments on bridges or an exclusive alignment, but most construction is in-street. (LRT development is being aggressively pursued worldwide, and there are many more LRT projects recently constructed or now under way than are included here — but keep in mind that this study focuses only on projects with exclusive or nearly exclusive in-street construction (to compare the most difficult, highest-cost type of surface construction with subway construction). For most LRT projects, in-street construction may only represent a portion of the total alignment.)

All projects include costs of vehicles and facilities, as applicable. One should also note that the unit cost of an extension project is typically less than that of a new-start project, since basic storage-maintenance facilities and a vehicle fleet are often already in place, with perhaps only incremental additions required.

Per-mile unit costs (millions of U.S. dollars per route mile) have been calculated from total project costs and project lengths, and escalated to 2014 dollars. The results are presented in the following bar charts.

U.S. projects

Basic cost-per-mile data is present in this section for U.S. projects only ($ millions per mile).

1_ARN_Subway-cost-US

2_ARN_LRT-cost-US


Projects in other world cities

The cost-per-mile data in this section is derived from various projects outside the USA around the world (U.S. $ millions per mile).

3_ARN_Subway-cost-world

4_ARN_LRT-cost-world


Conclusion — Subways cost many times more

This final graph compares median cost per mile between subway and in-street LRT projects for both the USA and for all projects (including U.S.) worldwide (U.S. $ millions per mile).

5_ARN_Median-cost-per-mile


From this data visualization, it can be seen that, for recent U.S. projects, subway construction has a median cost nearly seven times that of in-street LRT construction. Worldwide, the differential is nearly 9:1. And thats only comparing in-street LRT construction, not accounting for the possibility of, say, transitioning into an available railway alignment outside the city center, with far lower installation cost.

What this means is that, even if your community can somehow afford the initial financial commitment (even with federal assistance), expansion of your system will be severely attenuated. Basically, for a given amount of available funding, you can construct 7 to 9 times as much surface LRT as subway. Put another way: For available resources, you can have a far more comprehensive rail system with surface LRT, many times the size of a system relying on subway construction.

That doesn’t mean there’s never an appropriate role for subway alignments. Both Portland and Dallas, for example, are now evaluating subway options through their CBDs to keep pace with ridership growth and the need for fast, more frequent service going beyond in-street capacity.

But both cities relied primarily on surface construction to start and develop their initial systems (although, because of special conditions, Dallas’s initial system did include a short stretch of tunnel under the North Central Expressway). In any case, any community considering a new urban rail system should pause and take a deep breath, with an eye on the longer-term implications, before committing to a subway option. And certainly, from the data above, such a commitment should not be made on the supposition that a subway would cost “just a little bit more” than constructing LRT in the street.

Note: Since its original posting, this article has been revised to incorporate small modifications and additions to narrative, and to substitute higher-quality chart graohics.

How Portland’s light rail trains and buses share a transit mall

LRT train on Portland's 5th Ave. transit mall swings to the curbside station to pick up waiting passengers. Photo: L. Henry.

LRT train on Portland’s 5th Ave. transit mall swings to the curbside station to pick up waiting passengers. Photo: L. Henry.

How can both buses and light rail transit (LRT) trains share the same transit-priority paveway or street? There are numerous examples that answer this, but certainly one of the best is in Portland, Oregon — the 5th and 6th Avenue transit malls.
Recently, the Austin Rail Now (ARN) blog posted an article focusing on Portland’s transit malls, and because of the more general usefulness of this information for many more communities, we’re re-posting it here with the kind permission of ARN.
The opening context for the article is the urban rail planning project currently under way by the City of Austin, Capital Metro (the transit authority), and a transit planning consortium called Project Connect. Transit priority lanes are now being installed on two major downtown north-south streets, and it’s been expected that urban rail trains would share these with buses, including the MetroRapid premium-bus services now being implemented in several major city corridors. However, some transit advocates are noting that these lanes may have insufficient capacity to handle all the bus routes plus MetroRapid, much less adding LRT into the mix.
Portland’s experience thus provides an illustration of how LRT trains and buses can share a priority alignment in a way that works well.

Capital Metro and the City of Austin have a project under way to designate “Transit Priority Lanes” on Guadalupe and Lavaca Streets downtown between Cesar Chavez St. and MLK Jr. Blvd. It’s mainly to expedite operation of the planned new MetroRapid bus services (Routes 801 and 803), but virtually all bus routes running through downtown will also be shifted to these lanes, located on the far-righthand side of traffic on each street (i.e., the righthand curbside lanes).

According to a 2011 study funded by the City of Austin, the Official (City + Project Connect) Urban Rail route is also envisioned to use these lanes downtown. Alternatives to the Official plan have also assumed that these routes would be available for alternative urban rail lines serving the Guadalupe-Lamar corridor.

However, there are legitimate questions as to whether these two lanes could simultaneously and effectively accommodate the two MetroRapid bus routes (10-minute headways each) plus all other Capital Metro routes (various headways) as well as urban rail (10-minute headway), all running in both directions.

Experience with both light rail transit (LRT) trains and buses sharing the same running way is rare in the USA, but one of the best examples can be seen in Portland, Oregon. For years, 5th and 6th Avenues through the downtown have been used by multiple bus routes as a transit mall, with a single lane provided for general motor vehicle access. In September 2009 LRT was added with the opening of the new Green Line; see: Portland: New Green Line Light Rail Extension Opens.

The integration of LRT with bus service in the 5th and 6th Avenue transit malls has worked well. Here’s a brief photo-summary illustrating some of the configurational and operational details.

• Buses and LRT trains share transitway

This illustrates how both bus services and LRT trains share the mall. Tracks, embedded in the pavement, weave from curbside to the second lane over. A third lane is kept open for mixed motor vehicle traffic.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

• LRT routes cross

This photo shows how the Green and Yellow LRT lines on the 5th Ave. transit mall cross the Red and Blue LRT lines running on 5th St. You’re looking north on 5th Ave., and just across the tracks in the foreground, the LRT tracks on 5th Ave. weave from the middle of the street over to the curbside, where a station-stop is located. This allows LRT trains to access stations but otherwise pass buses stopped at bus stops on the same street.

Portland 5th Ave. transit mall. Photo: L. Henry.

Portland 5th Ave. transit mall. Photo: L. Henry.

• LRT train leaving station

Here an LRT train has just left the curbside station, following the tracks into the middle lane of the street. This track configuration allows the train to pass a bus boarding passengers at a stop.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

• LRT train passing bus

Another train moves to the street center lane and passes the bus stop. Meanwhile, other buses queue up at the street behind.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

Portland 5th Ave. transit mall. Photo: Dave Dobbs.

• Bus bunching

Buses are prone to “bus bunching” (queuing) in high-volume situations because of their smaller capacity, slower operation, slower passenger boarding/deboarding, difficulty adhering to schedule, etc. However, notice how they’re channeled to queue up in a lane off the LRT track.

Portland 5th Ave. transit mall. Photo: L. Henry.

Portland 5th Ave. transit mall. Photo: L. Henry.

Can and will Austin and Project Connect planners learn anything about how to create workable Transit Priority Lanes from examples like this? Time will tell…