How can U.S. streetcars evolve into better light rail systems?

Prague Skoda 15T tram (streetcar) running in mixed traffic. Photo: Pinterest.

Prague Skoda 15T tram (streetcar) running in mixed traffic. Photo: Pinterest.

Last month, our article «For new urban rail — Modern streetcars now lead light rail revolution» emphasized that “For the first time since the advent of the USA’s modern light rail transit (LRT) revolution in the mid-1970s, the modern streetcar — a scaled-down version of higher-performance LRT — has emerged as the leading form of LRT development for launching urban rail in American cities.” One of the features of the new-start modern streetcar systems, the article notes, is “more reliance on sharing road space with motor vehicle traffic” (i.e., as compared with prior conventional implementations of LRT). However, it’s precisely that “reliance” on sharing streets with mixed motor vehicle traffic that has fed a debate, at least in North America, among transit advocates over the relevancy of some streetcar lines, in contrast with “full LRT” routed in dedicated lanes or reservations. (Jarrett Walker, especially in posts on his Human Transit website, is an influential critic.)

The Light Rail Now Project team realize that dedicated-lane operation is superior, but we also recognize that occasionally mixed running with general traffic may be necessary. Furthermore, we believe that most streetcar systems should be implemented with a longer-term view toward eventual upgrade to “full” LRT features, included running in dedicated or exclusive lanes, under traffic-signal prioritization, etc.

Systems elsewhere, such as those in Europe and Australia, offer excellent examples of how streetcar (tramway) systems can by installed or upgraded cost-effectively with incremental operational improvements and tweaks. Tram advocate Tony Prescott, in postings on the Eurotrams online forum, provides useful information that offers some illumination on these issues.

Regarding tramway operations, Tony writes

One message you’re obviously going to have to get across in the debate is that separation [via dedicated or reserved lanes] is not a magic pill that will necessarily solve all street-running issues. A lot is … down to smart planning and operation. Mixed running along a street is not necessarily a problem till you get to an intersection, and you will see if you study a lot of the European cab videos that the tracks are segregated as they approach an intersection, as far back as necessary to avoid the tram being caught in a traffic tailback.

There are lots of little such techniques – and most importantly skilled management – that keep those traditional European tramways moving along swiftly, indeed often more swiftly than many expensive new separated “modern light rail” projects.

Tony cites a YouTube video of one of Prague’s tramlines (Line 18, videoed from the cab of one of the city’s new Skoda 15T trams, such as the one shown at the top of this post). The video provides an excellent illustration of the techniques used in a modern European city, with heavy reliance on tramway services for its public transport, to optimize operations via a blend of mixed-traffic and dedicated-lane alignments plus deft traffic management. Even just a few minutes is worth watching (the full video is nearly an hour in length) to acquire an understanding of the sensible, often minimalist techniques deployed to expedite tram (streetcar) operations in this city.



As Tony points out:

What is interesting about this video is that it is filmed on an evening weekday peak run. … This video shows the peak-hour challenges faced on line 18 between Pankrac depot and Petriny. It goes across the city and through the centre from south-east to west.

In relation to the parallel discussion here about mixed-traffic running vs separation, it shows the varied running environments, challenges and techniques on one of the world’s busiest tram systems. You can also see the now considerable development of shared running with buses through the tram stops, to the enormous benefit of bus operations and interchange convenience for passengers. This has been made possible by the development of 100% low floor buses with multiple doors, enabling the same dwell times as trams.

Tony also notes that “In Prague, buses don’t enter the city centre for environmental reasons. They feed off the trams and metro at the edges of the city centre.” Perhaps an interesting and useful model for North American urban public transport?

Our own recommendation: These comments and videos of high-quality tramway/streetcar services like this represent lessons that planners and designers of new streetcar systems in North America would be well-advised to heed. ■

Advertisements

TRB/APTA study: Developing Infrastructure-Relevant Guidelines for Preliminary Conceptual Planning of a New Light Rail Transit System

Typical LRT station platform profile dimensions, as discussed in TRB/APTA presentation on LRT design guidelines. Graphic: L. Henry.

Typical LRT station platform profile dimensions, as discussed in TRB/APTA presentation on LRT design guidelines. Graphic: L. Henry.

From the standpoint of public transport and light rail transit (LRT) advocacy, there’s long been a need for planners, political and civic leaders, decisionmakers, and community stakeholders to have a guidelines manual as well as a general understanding of the details of LRT design and technical issues.

LRN technical consultant and Railway Age online writer Lyndon Henry has taken a major step toward the development of such guidelines in a report prepared for the 13th National Light Rail & Streetcar Conference co-sponsored by Transportation Research Board and American Public Transportation Association, to be held next week in Minneapolis, Minnesota. Titled Developing Infrastructure-Relevant Guidelines for Preliminary Conceptual Planning of a New Light Rail Transit System, the proposal will be presented in the conference’s Infrastructure Developments session on Tuesday, Nov. 17th. Here’s an abstract of the report:

Increasingly, local planners, transit agency personnel, other professionals, and civic and community leaders have need of comprehensive, readily accessible guidelines to provide a resource for developing conceptual design and evaluation plans, particularly involving infrastructure and fleet requirements, for new light rail transit (LRT) systems in their communities.
This paper addresses this need and seeks to initiate the development of such a resource by presenting a sampling compilation of Best Practices and design recommendations for conceptual planning of LRT alignments and associated infrastructure. This discussion lays out preliminary criteria for such a more comprehensive and inclusive guideline document, as well as providing design information based on common practice. The paper hopefully will both serve as a resource to the intended audience and stimulate further development and elaboration of a comprehensive guidelines document. It is intended to have applicability and transferability for a broad range of North American communities in the early stages of considering and evaluating new LRT systems.

Both a copy of the paper and the PPT presentation can be downloaded here (as PDFs):

Proposed Design (paper):

_LH_Developing-guidelines_draft-refs_public-doc

Proposed Design (PPT):

LH_Developing-guidelines-new-LRT_public-ppt

TRB/APTA study: A Proposed Design Alternative for Inserting Dedicated Light Rail Transit Lanes and Other Facilities in a Constrained Arterial Roadway

San Francisco's N-Judah light rail transit (LRT) line provides a model of how 2-track LRT can be fitted into a narrow arterial. Photo: Eric Haas.

San Francisco’s N-Judah light rail transit (LRT) line provides a model of how 2-track LRT can be fitted into a narrow arterial. Photo: Eric Haas.

How can dedicated lanes for a 2-track light rail transit (LRT) line be inserted into a relatively narrow 75 to 80-ft-wide arterial street or roadway, while maintaining basic 2-lane traffic flow capacity in each direction? Plus facilities for pedestrians and bicycles?

LRN technical consultant and Railway Age online writer Lyndon Henry describes how in a proposal prepared for the 13th National Light Rail & Streetcar Conference co-sponsored by the Transportation Research Board and American Public Transportation Association, to be held next week in Minneapolis, Minnesota. Titled A Proposed Design Alternative for Inserting Dedicated Light Rail Transit Lanes and Other Facilities in a Constrained Arterial Roadway, the proposal will be presented in the Complete Streets session on Monday, Nov. 16th. Here’s an abstract of the report:

Plans for inserting new light rail transit (LRT) tracks and other facilities directly into existing streets and arterial roadway s often encounter the problem of constrained right-of-way. This can present a serious challenge, especially when maintenance of basic traffic lane capacity is desired together with dedicated transit lanes. This paper suggests, as an example, a design solution that may be applicable or adaptable to similarly challenging situations. In a right-of-way width limited to 80 feet/24.2 m , inserting dedicated lanes for LRT while maintaining four traffic lanes plus adequate pedestrian and bicycle facilities was a significant design challenge. The proposed solution utilizes the adaptation of a very similar example of San Francisco’s Muni Metro (LRT) N-Line running in Judah Street. It also relies on Best Practices from several existing LRT systems and other sources such as the National Association of City Transportation Officials.
Hopefully the design concept described in this paper may be useful to the intended audience in suggesting a possible approach to solving similar problems involving the installation of LRT alignments in constrained arterial roads. It is expected to have applicability, potential adaptability, and transferability for a broad range of North American communities confronting similar design challenges.

Both a copy of the paper and the PPT presentation can be downloaded here (as PDFs):

Proposed Design (paper):
LH_Design-alternative-dedicated-LRT_doc-public

Proposed Design (PPT):
LH_Design-alt-LRT-in-arterial_ppt-public

New subway (metro) systems cost nearly 9 times as much as light rail

Buffalo's LRT 6.4-mile system, with 5.2 miles (81%) in subway, has not been expanded since its opening in 1985. Photo: Buffalo Tourism.

Buffalo’s 6.4-mile LRT system, with 5.2 miles (81%) in subway, has not been expanded since its opening in 1985. The high cost of subway construction is a likely factor. Photo: Buffalo Tourism.

Before the surface electric urban railway (the technology of former streetcar and interurban systems) was reborn as light rail transit (LRT) in the mid-1970s, North American urban areas that wanted urban rail for their inner cities really didn’t think there was any choice other than a full subway-elevated system — rail rapid transit, aka a metro system.

But not only was the expense of such a system daunting, and way above the financial capability of most moderate-sized and smaller American cities, its tremendous capacity generally wasn’t needed for cities just trying to get their feet wet with better-quality public transit.

Then, LRT as an option began to emerge, unveiled with maximum force at the first National Light Rail Conference of the Transportation Research Board (TRB) in 1975, and … ka-boom! Urban rail systems in the form of lower-cost LRT began to sprout up in city after city. And they’ve been widely hailed as a great success and model for good urban public transport.

But the “why not a subway?” issue keeps rearing its head — mainly reflecting the resistance of the motor-vehicle-focused mindset to having urban space, especially street space, shared or usurped by mass transit operations. Overwhelmingly, surface LRT in one type of alignment or another (from street reservations to the re-use of abandoned railway corridors) has triumphed … although there have been cases where pressure to “build it out of sight” has forced new LRT startups underground (or even canceled planned projects altogether).

The tremendous investment cost of digging a subway and installing underground stations is obviously a huge deterrent to the development of such systems — both in the initial financing, and in sopping up available resources that could otherwise be plowed into vigorous expansion of the system. Buffalo’s 6.4-mile LRT line, for example, was constructed almost entirely (81%) in subway … and hasn’t been expanded one foot since its original opening in 1985.

One should keep in mind that the cost of more modest local projects (such as wastewater tunnels or similar smaller tunnels) can be very deceptive. Rail transit subways involve far more complex features (after all, they must provide environments to enable large numbers of human beings to survive underground safely and comfortably). There must be ventilation and lighting, of course, and often air-conditioning. More significantly from a cost standpoint, underground stations are extremely expensive, including access (elevators and escalators designed to convey large volumes of passengers rapidly up and down). Access for trains to get from the surface into the subway can also be expensive, typically involving portals spanning up to two city blocks and lengthy underground approach ramps to and from the level main subway alignment.

Nevertheless, from one city to another, subway enthusiasts (or, often, anti-rail Road Warriors seeking to tie a subway albatross around the neck of local rail planning) continue to emerge from time to time claiming that subway construction would cost only “slightly more” (or sometimes, even, “no more”) than installing a new urban rail line in public streets.

So a solid fact check is in order. After considerable investigation, the study summarized here has gathered a selected assortment of recent urban rail projects (all from the 2000s), either completed or well under construction and fully budgeted. A major and very helpful source has been Comparative Subway Construction Costs, Revised from the Pedestrian Observations blog, including data cited in comments. Additional data has come from Tramways & Urban Transit magazine (hardcopy only), September 2013 through February 2014 issues, data in Light Rail Now, Wikipedia, and the research study Comparative examination of New Start light rail transit, light railway, and bus rapid transit services opened from 2000, co-authored by Lyndon Henry and Dave Dobbs, and presented in November 2012 to the 12th National Light Rail Transit Conference in Salt Lake City, sponsored by the TRB and American Public Transportation Association (APTA).

In this cost comparison, only full subway projects (entirely or nearly totally underground) are included. These also include LRT subways (e.g., San Francisco’s Central Subway, and underground LRT projects in Seattle). LRT projects are exclusively (or nearly so) in street alignments (e.g., San Francisco’s T-Line, Salt Lake City’s University line), and involve full-capability, high-performance LRT rather than streetcar technology. In some cases (e.g., Houston, Phoenix, Minneapolis), construction may include short segments on bridges or an exclusive alignment, but most construction is in-street. (LRT development is being aggressively pursued worldwide, and there are many more LRT projects recently constructed or now under way than are included here — but keep in mind that this study focuses only on projects with exclusive or nearly exclusive in-street construction (to compare the most difficult, highest-cost type of surface construction with subway construction). For most LRT projects, in-street construction may only represent a portion of the total alignment.)

All projects include costs of vehicles and facilities, as applicable. One should also note that the unit cost of an extension project is typically less than that of a new-start project, since basic storage-maintenance facilities and a vehicle fleet are often already in place, with perhaps only incremental additions required.

Per-mile unit costs (millions of U.S. dollars per route mile) have been calculated from total project costs and project lengths, and escalated to 2014 dollars. The results are presented in the following bar charts.

U.S. projects

Basic cost-per-mile data is present in this section for U.S. projects only ($ millions per mile).

1_ARN_Subway-cost-US

2_ARN_LRT-cost-US


Projects in other world cities

The cost-per-mile data in this section is derived from various projects outside the USA around the world (U.S. $ millions per mile).

3_ARN_Subway-cost-world

4_ARN_LRT-cost-world


Conclusion — Subways cost many times more

This final graph compares median cost per mile between subway and in-street LRT projects for both the USA and for all projects (including U.S.) worldwide (U.S. $ millions per mile).

5_ARN_Median-cost-per-mile


From this data visualization, it can be seen that, for recent U.S. projects, subway construction has a median cost nearly seven times that of in-street LRT construction. Worldwide, the differential is nearly 9:1. And thats only comparing in-street LRT construction, not accounting for the possibility of, say, transitioning into an available railway alignment outside the city center, with far lower installation cost.

What this means is that, even if your community can somehow afford the initial financial commitment (even with federal assistance), expansion of your system will be severely attenuated. Basically, for a given amount of available funding, you can construct 7 to 9 times as much surface LRT as subway. Put another way: For available resources, you can have a far more comprehensive rail system with surface LRT, many times the size of a system relying on subway construction.

That doesn’t mean there’s never an appropriate role for subway alignments. Both Portland and Dallas, for example, are now evaluating subway options through their CBDs to keep pace with ridership growth and the need for fast, more frequent service going beyond in-street capacity.

But both cities relied primarily on surface construction to start and develop their initial systems (although, because of special conditions, Dallas’s initial system did include a short stretch of tunnel under the North Central Expressway). In any case, any community considering a new urban rail system should pause and take a deep breath, with an eye on the longer-term implications, before committing to a subway option. And certainly, from the data above, such a commitment should not be made on the supposition that a subway would cost “just a little bit more” than constructing LRT in the street.

Note: Since its original posting, this article has been revised to incorporate small modifications and additions to narrative, and to substitute higher-quality chart graohics.

How rail public transportation has been a leader in the Analytics and Big Data revolution

Diagram from Digi International illustrates some of the multiple ways that Analytics and Big Data may be involved with rail public transport operation.

Diagram from Digi International illustrates some of the multiple ways that Analytics and Big Data may be involved with rail public transport operation.

In a paper presented this past June (2013) to the annual Rail Conference of the American Public Transportation Association (APTA) in Philadelphia, Light Rail Now Project technical consultant Lyndon Henry (also an independent transportation planning consultant with Urban Rail Today and a blog columnist for Railway Age magazine) emphasized the leading role that rail public transportation has been playing — actually for a number of decades — in the Analytics and Big Data revolution that has been sweeping through both the private and public sector of global economies. (Lyndon is also a blog writer for the All Analytics online forum, sponsored by business analytics provider SAS.)

The paper — titled Analytics and Big Data — Rail Public Transportation is a Leader — not only highlighted a wide variety of applications of the newly emerging capabilities of this technology, but also the long developmental legacy in which rail public transportation has been a pioneer.

So, what are Analytics and Big Data, anyway? This is best explained in the paper’s introduction itself:

Two concepts currently at the leading edge of today’s information technology (IT) revolution are Analytics and Big Data. Analytics is high-technology applied to data processing, complex calculations, and automation; Big Data is the current term referring to significantly large volumes of data, on virtually every facet of human activities and characteristics, that can be rapidly processed via Analytics, yielding a broad spectrum of highly useful results. Recent technological advances have sparked what amounts to a “revolution” in the application of these cognitive and informational tools.

“Apparently without realizing it,” observes the paper, “the public transportation industry, has, for many decades, been at the forefront in utilizing and implementing Analytics and Big Data, from ridership forecasting to transit operations.” As it goes on to explain:

Rail transit systems have been especially involved with these IT concepts, and tend to be especially amenable to the advantages of Analytics and Big Data because they are generally “closed” systems that involve sophisticated processing of large volumes of data. In virtually any American city, on any normal weekday, one is likely to see the results of analytics literally in motion — the operation of transit buses and trains that are essential to maintaining the mobility of the metro area.

The more that public transportation professionals and decisionmakers understand the role of Analytics and Big Data in their industry in perspective, the more effectively they will be able to utilize its promise. Furthermore, it is useful for both the public and the industry to realize how significantly public transportation has been a leading pioneer in the rich and extensive historic development of these tools, the roots of which in some cases extend back to 19th century rail technology.

The paper then details a number of the major general applications of Analytics and Big data in modern rail passenger and rail transit systems:

Travel Demand Modeling — how analytics has actually been used for decades in planning new public transportation services and infrastructure

Train Signal and Control Systems — involving components and technologies such as automatic block signaling (ABS), cab signaling system (CSS), centralized traffic control (CTC), automatic train stop (ATS), automatic train control (ATC), communications-based train control (CBTC), automatic train operation, or ATO, and positive train control (PTC)

Route Planning and Scheduling — involving analytics-based software for tedious tasks such as routing, developing timetables, blocking (developing bus and train schedules),runcutting, and essential component tasks such as rostering

Automatic Vehicle Location (AVL) — this transit operating mechanism deploys analytics to track vehicles in operation and and provide information to passengers via passenger information display (PID) monitors or digital signs in stations, or apps on smartphones

Automated Fare Collection (AFC) — typically relying on ticket vending machine (TVM) devices in stations that can receive cash or process credit card swipes, thus also instantly updating a central database

Automated Passenger Counting (APC) — tallies how many passengers are boarding or deboarding each vehicle, and precisely where this happens, and relays this information continuously to a central database

To illustrate some of these applications, a number of case studies are highlighted from actual operating systems:

Bay Area Rapid Transit (BART) — focusing on agency’s operational analytics providing delay analysis, passenger flow modeling (PFM), system performance analysis, and operational forecasting.

Salt Lake City TRAX — focusing on CTC train tracking and dispatching system, the GPS-based passenger information system, and the AFC system.

Austin – Capital Metro’s MetroRail — focusing on operational analytics involved with the ABS (automatic block signal) system overseen by CTC (central traffic control), the GPS-based AVL and passenger information system, and APC.

Philadelphia – SEPTA Regional Rail — focusing on the system’s signaling-dispatching technology, mainly involving a combination of CTC, ABS, and ATC, plus CSS and PTC via compatibility with Amtrak’s Advanced Civil Speed Enforcement System (ACSES).
In addition, Analytics is being utilized in the form of APC, as well as planning and scheduling, plus a passenger information system utilizing both PIDs with train arrival/departure onfprmation and a smartphone app providing bus and train status information to passengers’ personal devices.

Philadelphia – SEPTA Suburban Trolley Lines — focusing on these lines’ signal systems, currently ABS-based, but with planned conversion to CBTC is being planned.

Seattle – Sound Transit’s Link and Sounder — focusing on these operations’ enhanced AFC system utilizing the new regional, trans-agency ORCA payment card.

Tacoma – Sound Transit’s Tacoma Link Streetcar — focusing on how this very small, simple, extremely bare-bones system integrates its APC system with onboard GPS, and provides on-train passenger announcements triggered by wheel pulses from the cars’ propulsion sensors that gauge distance traveled.

The paper concludes with an overview of some of the most salient current issues and trends in Analytics and Big Data, and their relevance for rail public transportation. Topics include:

Data Mining

Cloud Computing

Sentiment Analysis

Security issues

Privacy Concerns

Predictive Analytics

Robotics

Check out the full paper for a more detailed discussion of these topics.

A PowerPoint slide show presented at the conference is also available online.