More New LRT Systems Sprouting Across North America

 

Ottawa Confederation LRT (left), Oklahoma City Streetcar (right). Photo: YouTube screenshots by LRN.

It’s no secret that the Covid pandemic cast a pall upon public transport, and light rail transit (LRT) has certainly been no exception. But the good news, particularly in North America, is that, while ridership has taken a hit, major construction and enhancements have proceeded for many existing LRT operations. 

Moreover, in recent years, even through the pandemic, totally new-start LRT projects for several North American cities (including in some metro areas already operating other forms of urban rail) have also been making progress. Light Rail Now reported briefly on several of these systems as they were under construction eight years ago. 

At that time, the major new North American light rail system to open had been Norfolk’s <em>The Tide</em> rapid-type LRT in 2011. Now, since then, a swath of additional new systems have opened in the United States and Canada, and more projects are heading toward startup. Tabulated below is a quick rundown of these most recent new-start LRT projects, both “rapid” light rail and streetcar.

In this brief summary, all new rolling stock in the new streetcar lines described is modern except for heritage PCC cars in El Paso. In most cases, power to rolling stock is supplied by an overhead contact system (OCS, typically simple trolley wire or catenary), but some installations include battery operation as noted. Power is supplied at 750 VDC unless indicated otherwise.

 

 

LRT new starts: USA

► Salt Lake City: S-Line streetcar • Opened 2013 ► Using a former railway branch alignment, this 2.0-mi/3.2-km route connects the city’s Sugar House district with the nearby suburban community of South Salt Lake and links up with the region’s Trax rapid-type LRT system.

► Tucson: Sun Link streetcar • Opened 2014 ► Currently operating over a 3.9- mi/6.3-km route and powered by a standard OCS installation, the city’s streetcar-based urban rail system connects the University of Arizona campus with downtown Tucson and the Mercado District under development to the west.

► Atlanta: Atlanta streetcar • Opened 2014 ► This 2.7-mi/4.3-km line currently provides connections and pedestrian circulation services in a loop connecting Centennial Olympic Park with the Martin Luther King, Jr. National Historical Park and nearby neighborhoods east of downtown, including a direct link to the MARTA rapid transit system’s Peachtree Center station and other transit lines.

► Dallas: Dallas streetcar • Opened 2015 ► This 2.4-mi/3.9-km line modern streetcar line connects downtown Dallas to Oak Cliff, across the wide Trinity River flood plain, by way of the Houston Street Viaduct. An extension to the Bishop Arts District opened in 2016. Cars are mainly powered by OCS, but run on battery power over the viaduct. The modern system is totally separate from, and unconnected to, the heritage McKinney Avenue Streetcar line that has served its important neighborhood and commercial district since 1989.

► Charlotte: CityLynx streetcar • Opened 2015 ► Designated the Gold Line within Charlotte’s urban rail system, this 4.0-mi/6.4-km modern streetcar line initially opened over a mainly east-west route following Beatties Ford Road, Trade Street, and Central Avenue through central Charlotte. Additional links from the Charlotte Transportation Center to French Street, and from Hawthorne & 5th to Sunnyside Avenue opened for service in 2021.

► Washington: DC Streetcar • Opened 2016 ► Currently streetcar service operates over a 2.4-mi/3.9-km segment running in mixed traffic along H Street and Benning Road in the city’s Northeast quadrant.

► Kansas City: KC Streetcar • Opened 2016 ► Kansas City’s streetcar-based urban rail system follows a 2.2-mile/3.5 km route between the River Market and Union Station, mostly along Main Street, running through the city’s central business district and the Crossroads Arts District.

► Cincinnati: Cincinnati Bell Connector streetcar • Opened 2016 ► The service operates in mixed traffic on a 3.6-mi/5.8-km loop from The Banks, Great American Ball Park, and Smale Riverfront Park through downtown Cincinnati and north to Findlay Market at the northern edge of the historic Over-the-Rhine neighborhood.

► Detroit: QLine streetcar • Opened 2017 ► Originally called the M-1 Line by its developers, this 3.3-mi/5.3-km streetcar service connects Downtown Detroit with Midtown and New Center, running along Woodward Avenue for its entire route. Lithium batteries provide power in about 60% of the operating cycle, with OCS powering cars and recharging in the remainder.

► Milwaukee: The Hop streetcar • Opened 2018 ► Milwaukee’s Streetcar, branded as The Hop, provides a modern streetcar service over an initial 2.1 mi/3.4 km route connecting the Milwaukee Intermodal Station and Downtown to the city’s Lower East Side and historic Third Ward neighborhoods. A 0.4-mile/640-m Lakefront branch to the proposed “Couture” high-rise development has been mostly constructed, and is expected to open imminently. Power is supplied by OCS, mostly simple trolley wire, except for 3,300 feet (1 kilometer) in sections along Kilbourn Avenue and Jackson Street where cars are powered only by their batteries.

Passengers deboarding Milwaukee’s The Hop streetcar. Photo: The Hop.

► Oklahoma City: OKC Streetcar • Opened 2018 ► This 4.8 mi/7.7 km system is routed over two lines that connect Oklahoma City’s Central Business District with the entertainment district, Bricktown, and the Midtown District. Most operation is powered under OCS except for two short segments where cars operate under battery power. (See photo at beginning of article.)

► El Paso: El Paso Streetcar (heritage) • Opened 2018 ►Using a fleet of renovated historic streetcars, this line runs 4.8 mi/7.7 km over two loops from through El Paso’s uptown and downtown areas to the University of Texas at El Paso. Notably, the historic PCC cars refurbished for the project had been kept in storage since the city’s last original streetcar operation was abandoned in 1974.

► Phoenix: Tempe Streetcar • Opened 2022 ► Serving Tempe, a large suburban city adjacent to Phoenix’s east side, this 3.4-mi/5.7-km modern streetcar line running in streets with mixed traffic connects the Arizona State University campus with downtown Tempe and neighborhoods to the south. It intersects several stations of the city’s rapid Valley Metro LRT system. Power for the streetcars varies between OCS and onboard batteries.

► Orange County, California: OC Streetcar • Opening planned 2023 ► This 4.2 mi/6.7 km modern streetcar (LRT) line is currently under construction in Orange County, California, running through the cities of Santa Ana and Garden Grove, routed partly in mixed traffic and in dedicated right-of-way. New infrastructure includes constructing a new double-track rail bridge and an overpass over a busy arterial.

► Washington DC (Maryland suburbs): Purple Line LRT • Opening planned 2026 ► This 16.2-mile (26.1 km) rapid LRT line is intended to link several Maryland suburbs of Washington, D.C.: Bethesda, Silver Spring, College Park, and New Carrollton. The line will also enable riders to transfer between the Maryland branches of the Red, Green, Yellow, and Orange lines of the Washington Metro without riding into central Washington, and between all three lines of the MARC regional (commuter) rail system. Power, likely to be delivered by OCS in a catenary suspension, will be energized at 1,500 volts (placing the Purple Line in a small category of new higher-power North American LRT systems that also includes Seattle’s Link and Ottawa’s Confederation Line).

► Austin: MetroRail LRT • Opening planned 2029 ► Public transit agency Project Connect is planning two light rail lines, designed to operate free from traffic to link key destinations throughout Austin. The Orange Line, serving Austin’s crucial central north-south local travel corridor, is planned to stretch approximately 21 miles (34 km) to link North and South Austin. From Tech Ridge in the north, the line would follow North Lamar Blvd. and Guadalupe St., connecting the University of Texas campus, dense West Campus neighborhood, the Capitol Complex (state government offices), and downtown before crossing the Colorado River and heading south along South Congress Ave. to Slaughter Ln. in the far south of the city. The Blue Line would provide service over a 15-mile (24-km) route starting at U.S. 183 in North Austin, sharing the Orange Line alignment into downtown, then crossing the river and proceeding southeast to Austin-Bergstrom International Airport. Included in the original plan is 1.6-miles (2.6 km) of LRT tunnel as alignments through downtown for both Orange and Blue lines as well as a future eastside Gold LRT line.

 

 

LRT new starts: Canada

► Waterloo Region (Ontario): ION Light Rail • Opened 2019 ► The Waterloo Region is a cluster of urban villages about 55 miles southwest of Toronto. The 11.8-mi/19.0 km first stage of the planned larger ION LRT system, basically an interurban LRT service, connects Conestoga Station in Waterloo to Fairway Station in Kitchener, including 19 stations, some of them designed to serve trains in each direction on a single track. A particularly interesting technical feature is track-sharing with heavy freight railroads and the used of interlaced (“gauntlet”) track to facilitate operation through switches and clearances at stations.

Waterloo-Kitchener ION LRT train entering station in private right-of-way alignment, June 2019. Photo: Jason, Wikipedia.

► Ottawa: Confederation Line LRT • Opened 2019 ► The Confederation Line (Line 1) represents Ottawa’s first deployment of actual LRT technology, and replaces a section of the Bus Rapid Transit (BRT) Transitway that previously served the city center. (See photo at beginning of article.) This new line, completely grade-separated, runs both underground and on the surface 7.8 mi/12.5 km east–west from Blair to Tunney’s Pasture, connecting to the Transitway at each end and with the Trillium rail service at Bayview. It includes a tunnel through downtown with three subway stations. Electrification is relatively high at 1,500 VDC, delivered to trains by catenary-type OCS (similar to the power system used by Seattle’s Link LRT). It must be noted that the diesel-powered Trillium line, described locally as “light rail”, is technologically equivalent to other light-capacity regional diesel-multiple-unit (DMU) services (lately called “hybrid rail” by the U.S. Federal Transit Administration) such as those in New Jersey (River Line), Southern California (Sprinter), and Austin (MetroRail Red Line).

► Peel Region (Ontario): Hurontario LRT • Opening planned 2024 ► The Peel Region is a regional municipality of the Greater Toronto Area, just to the west and northwest of the city of Toronto, encompassing the suburban cities of Mississauga and Brampton, among other smaller communities. The Hurontario LRT, currently under construction, is a 10.9 mi/17.6-km light rail line planned to run on the surface along Hurontario Street from the Port Credit GO Station in Mississauga to Steeles Avenue in Brampton.

► Quebec City: Quebec City Tramway • Opening planned 2026 ► This light rail transit line in Quebec City is planned to open in 2026. The initial 14-mi/23-km route will link Charlesbourg to Cap Rouge, passing through Quebec Parliament Hill. While the line will include a 2.2-mi/3.5-km underground segment, most of it will be constructed on the surface.   

► Hamilton: Hamilton LRT  • Opening date TBD ► Hamilton is a large industrial and port city about  28 miles/45 kilometers southwest of Toronto in the Greater Toronto and Hamilton Area.  The Hamilton LRT (also known as the B-Line) is planned to operate along Main Street, King Street, and Queenston Road, extending 8.7 miles (14 kilometers), with 17 station-stops, from McMaster University to Eastgate Square via downtown Hamilton.

It should be noted that a 26-km (16-mi) starter line for a major LRT system has also been proposed for the city of Gatineau, Quebec, located on the northern bank of the Ottawa River, immediately across from Ottawa, Ontario within Canada’s National Capital Region. However, funding has not yet been finalized.

 

Considerations for other cities

This vigorous bustle of totally new light rail starts in nearly two dozen cities across North America is breathtaking – 21 new LRT installation projects (both rapid LRT and streetcar) in eight years. That’s not counting all the new extension projects of existing systems in cities like Seattle, Minneapolis, Milwaukee, Charlotte, Los Angeles, Phoenix, Edmonton, Calgary, and more.

The explosive growth of new LRT starts suggests that community members and civic leaders across the continent are increasingly recognizing the unique advantages of LRT for their cities – its exceptional attractiveness as public transport, and its powerful ability to catalyze and attract adjacent real estate development. This has simultaneously improved urban mobility, improved environmental quality, helped guide land use with techniques such as transit-oriented development (TOD), and boosted local taxbase with significant returns on investment (ROI).

Across North America, cities of various sizes remain that have no urban rail. San Antonio, Las Vegas, Indianapolis, Louisville, Omaha, Des Moines, Boise, Spokane, Knoxville, Raleigh, Richmond, Providence, Victoria, and Winnipeg are just a handful of the dozens of communities that would likely benefit from considering some form and application of light rail. The new starts that this article has summarized certainly provide some models to examine. ■

Simulation of Quebec City Tramway in street alignment. Graphic:  YouTube screenshot by LRN.

 

 

Reference sources

Light rail in the United States, Wikipedia, updated 7 November 2022.

https://en.wikipedia.org/wiki/Light_rail_in_the_United_States

List of North American light rail systems by ridership, Wikipedia, 22 November 2022.

https://en.wikipedia.org/wiki/List_of_North_American_light_rail_systems_by_ridership

Urban rail transit in Canada, Wikipedia, updated 11 November 2022.

https://en.wikipedia.org/wiki/Urban_rail_transit_in_Canada

Dallas Streetcar, Wikipedia, updated 7 October 2022.

https://en.wikipedia.org/wiki/Dallas_Streetcar

CityLYNX Gold Line Streetcar, City of Charlotte website, accessed 29 November 2022.

https://charlottenc.gov/cats/rail/cityLYNX/Pages/default.aspx

CityLynx Gold Line, Wikipedia, updated 29 October 2022.

https://en.wikipedia.org/wiki/CityLynx_Gold_Line

DC Streetcar, Wikipedia, updated 24 October 2022.

https://en.wikipedia.org/wiki/DC_Streetcar

Editorial, A new streetcar in Arizona: Tempe! Urban Transport Magazine webpage, 20 May 2022.

https://www.urban-transport-magazine.com/en/a-new-streetcar-in-arizona-tempe/

Tempe Streetcar, Wikipedia, updated 27 October 2022.

https://en.wikipedia.org/wiki/Tempe_Streetcar

Tempe Streetcar, Valley Metro website, accessed 2022-11-28.

https://www.valleymetro.org/project/tempe-streetcar

Tempe Streetcar, Stacy and Witbeck website, accessed 2022-11-28.

https://www.stacywitbeck.com/projects/tempe-streetcar/

El Paso Streetcar, Wikipedia, updated 19 August 2022.

https://en.wikipedia.org/wiki/El_Paso_Streetcar

The Hop (streetcar), Wikipedia, updated 25 November 2022.

https://en.wikipedia.org/wiki/The_Hop_(streetcar)

KC Streetcar, Wikipedia, updated 26 November 2022.

https://en.wikipedia.org/wiki/KC_Streetcar

QLine, Wikipedia, updated 28 November 2022.

https://en.wikipedia.org/wiki/QLine

About the Oklahoma City Streetcar, Oklahoma City Streetcar website, accessed 30 November 2022

Oklahoma City Streetcar, Wikipedia, updated 19 August 2022

https://en.wikipedia.org/wiki/Oklahoma_City_Streetcar

OC Streetcar, Wikipedia, updated 2 November 2022.

https://en.wikipedia.org/wiki/OC_Streetcar

Light Rail Overview, Purple Line website, Maryland Transit Commission, accessed 29 November 2022.

https://www.purplelinemd.com/about-the-project/overview

Purple Line (Maryland), Wikipedia, updated 29 November 2022.

https://en.wikipedia.org/wiki/Purple_Line_(Maryland)

Project Connect Transit Plan, HDR website, accessed 29 November 2022.

https://www.hdrinc.com/portfolio/project-connect-transit-plan

Project Connect, Wikipedia,  updated 4 September 2022.

https://en.wikipedia.org/wiki/Project_Connect

Stage 2 ION light-rail project receives provincial clearance, Mass Transit online, June 22, 2021

https://www.masstransitmag.com/rail/article/21227649/stage-2-ion-lightrail-project-receives-provincial-clearance

Confederation Line, Wikipedia, 27 November 2022.

https://en.wikipedia.org/wiki/Confederation_Line

Quebec City Tramway, Wikipedia, updated 3 October 2022.

https://en.wikipedia.org/wiki/Quebec_City_Tramway

Quebec City tramway finally gets green light as province gives unconditional approval, CBC News, 6 April 2022.

https://www.cbc.ca/news/canada/montreal/tramway-quebec-city-approved-1.6410943

Regional Municipality of Peel, Wikipedia, 30 September 2022.

https://en.wikipedia.org/wiki/Regional_Municipality_of_Peel

Desmond Brown, Procurement process for LRT to start later this year, construction in 2024, [Hamilton] CBC News, 18 July 2022.

https://www.cbc.ca/news/canada/hamilton/hamilton-lrt-project-1.6524030

Hamilton LRT, Wikipedia, updated  28 September 2022.

https://en.wikipedia.org/wiki/Hamilton_LRT

For new urban rail — Modern streetcars now lead light rail revolution

Streetcar under testing in downtown Kansas City. Streetcar systems can readily be upgraded into full-performance light rail transit. Photo: Michael Leatherman.

Streetcar under testing in downtown Kansas City. Streetcar systems can readily be upgraded into full-performance light rail transit. Photo: Michael Leatherman.

For the first time since the advent of the USA’s modern light rail transit (LRT) revolution in the mid-1970s, the modern streetcar — a scaled-down version of higher-performance LRT — has emerged as the leading form of LRT development for launching urban rail in American cities. Characterized by typically shorter stop spacing, somewhat slower speeds, more reliance on sharing road space with motor vehicle traffic, and often slightly smaller rolling stock, streetcars seem to be perceived as a more financially accessible path to initiate a new local urban rail system scaled to the needs of communities previously dependent only on buses for their public transit.

However, because its technology is nearly identical to high-performance LRT, streetcar starter lines may offer the basis of a system that can be upgraded to “full” LRT via affordable and reasonable modifications.

While several major cities with rail rapid transit and/or LRT systems (e.g., Washington DC, Atlanta, Seattle, Sacramento, St. Louis) are also adding streetcar operations with new streetcar systems, this article focuses on new modern streetcar projects that represent the first installation of any form of urban rail for their communities. Thus, projects now well under construction (with route-miles and total investment cost) include:

Cincinnati — 1.8 miles, $148 million

Kansas City — 2.2 miles, $102 million (see photo at top of post)

Detroit — 3.3 miles, $140 million

Modern streetcar projects in planning and preparatory stages of development are also under way in Oklahoma City, Milwaukee, and Ft. Lauderdale, leading the inauguration of urban rail for those communities as well.

In most cases, streetcars are being introduced initially as circulator modes, typically for the CBD or a single major corridor. Even when routed in mixed (shared) traffic, streetcars offer faster, more attractive service to comparable bus operations together with additional benefits for urban livability and economic development.

However, the possibility of upgrading this mode into a cost-effective, higher-performance form of LRT is raised by the rapid streetcar concept, originally proposed in 2004 by Lyndon Henry, a nationally known public transport planner and a technical consultant to Light Rail Now. The concept has generated interest within the rail transit planning profession; see, for example:

The Rapid Streetcar

Rapid Streetcar: Rescaling Design And Cost for More Affordable Light Rail Transit

Rapid Streetcar concept gaining ground

Henry and other public transport professionals and advocates emphasize that it’s critical to upgrade streetcar operations by converting shared-traffic street alignments into dedicated lanes free of other traffic, implementing traffic signal prioritization for streetcars, and expanding these new lines into other city sectors and suburbs.

New streetcar startups bringing rail transit to more U.S. cities

xxxxxxxxxxx

Tucson’s new Sun Link streetcar passes sidewalk cafe during opening day festivities in July 2014. Photo: Ed Havens.

Light rail transit (LRT) continues to sprout across the USA, driven especially by the lower cost and easier implementation of streetcar-type LRT technology. Listed below are several U.S. cities where new streetcar systems either have recently opened, or projects are under way, bringing the first rail transit in the modern era to these metro areas. Links to helpful articles providing further information are provided, as available.

Tucson

This medium-sized Arizona city’s 3.9-mile streetcar line, branded Sun Link, opened this past July, at an investment cost of $198.8 million. The starter line route links up the University of Arizona campus with important activity points like Main Gate Square, the Fourth Avenue business district, and downtown Tucson, continuing westward to the Mercado area west of Interstate 10. Ridership (averaging over 4,700 on weekdays) has already surpassed projections. See: Tucson Sun Link streetcar opens, meets ridership goal.

Cincinnati

This midwestern city’s streetcar project, now in the advanced stages of construction, will install a 3.6-mile loop (1.8 miles of route from one end to the other) in the CBD. The $133 million starter line will stretch from The Banks to Findlay Market, and is projected to open for service in the fall of 2016. See: CincyStreetcar Blog.

Kansas City

This 2.2-mile starter streetcar line will operate mostly along Main Street through the CBD, connecting River Market with Union Station. Budgeted at $102 million in 2012, the project is well under way. Construction began in May 2014, and the line is expected to open for passenger service in late 2015. See: Kansas City — Another new downtown streetcar project starts to take shape.

Oklahoma City

A 4.6-mile streetcar starter line, now in advanced planning, will bring rail transit to this major city. The project, currently estimated to cost $128.8 million, will circulate through the CBD, and will feature wireless operation beneath the BNSF Railway overpass linking the city’s MidTown area with the historic and adjoining Bricktown district. Opening is projected for late 2017 or early 2018. See: Oklahoma City Rail Transit and Public Transport Developments.

Milwaukee

The City has a 2.1-mile streetcar starter line project under way with a budgeted investment cost of $64.6 million. Extending from Ogden & Prospect on the northeast of the CBD to 4th & Wisconsin, completion has been targeted for 2016. However, the City may have to find an additional $20 million to cover the cost of utilities relocation, under a recent ruling by the Wisconsin Public Service Commission. See: Milwaukee aiming to start streetcar line construction in 2014.

Detroit

In September, tracklaying finally began for this 3.3-mile, $136 million streetcar starter line, financed from both public and private sources. Designated M-1, the line will operate on busy Woodward Avenue, from Grand to Congress. See: Detroit’s M-1 modern streetcar project gets under way. Opening is projected for 2016. See: Detroit’s M-1 modern streetcar project gets under way. ■

Cases where voters okayed rail transit after first rejecting

Rail transit ballot measures are critical events. But if one is rejected, is it a "catastrophic" for the community? Graphic: RochesterSubway.com.

Rail transit ballot measures are critical events. But if one is rejected, is it a “catastrophic” setback for the community? Graphic: RochesterSubway.com.

Voter rejection of a rail transit project is almost always unfortunate.

But is it catastrophic? Does it signal that the majority in a community will persistently and permanently reject any rail project, or does it represent a more temporary setback, with remaining hope that a better plan, a better presentation to voters, at a better time, could have a chance to win approval?

This issue often arises not only in communities where a rail transit project has unified support from transit advocates, but even in cases where an official plan has faced strong opposition from rail transit supporters. In an effort to mobilize support, proponents of the given project may argue that it may be the community’s “only chance for rail”, that, no matter its deficiencies, a given plan cannot be allowed to fail, because it would be a “disaster”, setting back rail development for decades, perhaps forever.

To evaluate the validity of this argument, and assess the actual delay between the failure of rail ballot measures and the ultimate passage of support for a subsequent rail transit ballot initiative, the LRN Project team examined available cases since 2000 where an initial rejection of rail was followed by a successful later vote. LRN’s approach has examined this issue strictly from the standpoint of attracting voter support — in other words, if the issue of rail transit is re-voted, how long does it take to win approval?

It should be noted that this study has examined the sequence of events only in cities where, after the failure of an initial measure, a new measure for rail transit (often with a somewhat different plan) was offered to voters. In other cases, poorly prepared or presented rail plans were rejected by voters, but rail planning was subsequently dropped (e.g., Spokane, Columbus) or has proceeded without needing a public vote (e.g., San Antonio).

Thus this study has sought to address the question: If rail has previously been rejected by voters, but a new rail measure is subsequently presented for a vote, how long does it take to achieve successful voter approval for rail?

Since 2000, there have been six cases where such re-votes have occurred:

Austin — A plan for a light rail transit (LRT) system was very narrowly defeated in 2000; rail transit was subsequently repackaged as a light railway using diesel-multiple-unit (DMU) rolling stock, and passed in 2004 (now branded as MetroRail). Delay between votes: 4 years.

Kansas City — An officially sponsored LRT plan was defeated in 2001; a different LRT plan initiated by a citizens’ referendum was subsequently approved in 2006. (However, the successful vote was annulled by the city council; implementation of an officially sponsored streetcar project is now underway without a public vote.) Delay between votes: 5 years.

Cincinnati — An LRT plan was rejected in 2002. Rail transit was subsequently repackaged as a streetcar plan that was forced to a public vote, and ultimately was approved in 2009. (A re-vote, forced by opponents’ referendum, was held in 2012, and the streetcar project again passed.) Delay between votes: 7 years.

Tucson — An LRT plan was rejected in 2002; rail transit was subsequently repackaged as a streetcar plan, then submitted for a public vote and approved in 2006. (The new system, branded as Sun Link, is due to open later this year.) Delay between votes: 4 years.

Seattle — A multi-modal transportation proposal, Roads and Transit, including LRT expansion, was defeated in 2007 (with opposition from environmental organizations and other traditional pro-transit groups, dissatisfied with the plan’s heavy highway element). A new package, Sound Transit 2, was prepared, with much heavier transit emphasis, and presented and approved by voters in 2008. Delay between votes: 1 year.

St. Louis — Proposition M, including funding for the region’s MetroLink LRT system, was defeated by voters in 2008. A new package, Prop. A, aided by an improved campaign, and including funding to improve and expand LRT, was subsequently approved in 2010. Delay between votes: 2 years.

From these experiences, it’s plausible to conclude the recent re-votes on rail transit have taken from one to seven years to succeed. This would not seem to suggest that initial loss of a vote results in a “catastrophic” delay of “decades” before a rail transit project can muster approval.

On the contrary, the average delay, on the basis of these cases, is 3.8 years. However, the data seems to suggest a pattern, whereby the delay before a successful rail transit re-vote is less in cities already operating some form of rail transit (Seattle, St. Louis), in contrast to cities where rail would be a totally new addition to the transit mix (Austin, Tucson, Kansas City, Cincinnati). This differential in average delay is illustrated graphically in the chart below:

Left bar: Average years of delay in cities already operating rail transit. Right bar: Average delay in cities with no current rail transit.

Left bar: Average years of delay in cities already operating rail transit. Right bar: Average delay in cities with no current rail transit.

Other than to infer that the loss of a vote does not inevitably represent a “catastrophic” setback for rail transit in a given city, this study with its very small data set does not offer a basis for strong conclusions. However, there is opportunity for plausible speculation:

• Conditions for a more speedy re-vote and approval of a rail transit ballot measure may be more propitious in communities that already have experience with successful rail transit systems.

• The process of re-submitting a rail transit measure to a vote may depend not so much on public attitudes but on the determination of sponsoring officials, their responsiveness to public input, and their willingness to re-craft specific project details to more closely conform to public needs and desires.

Kansas City — Another new downtown streetcar project starts to take shape

urt_kc-lrt-stc-sim-sb-Main-19th-St-2012x_Dntn-Corr-AA
Simulation of streetcar southbound on Main St. at 19th St. [Graphic: Downtown Corridor Alternatives Analysis]

[This article has been reprinted with permission from the Urban Rail Today website.]

Kansas City, Missouri — At a March 6th public meeting, city planners presented details of their construction schedule for Kansas City’s proposed 2.2-mile, $102 million streetcar project, approved by voters in late December (2012). The details may be instructive for streetcar advocates in other cities, giving them an idea of what’s typically involved in this kind of project.

The line is planned to run through the city’s Central Business District from River Market to Union Station, also serving Crossroads and Crown Center. According to a Dec. 28th report in the Kansas City Business Journal, “Proponents of the plan say the line … will spur development along Main Street while helping to attract young, creative residents to the city’s urban core.” The system is currently projected to open for service in 2015.

urt_kc-lrt-stc-map-proposed-2012_Dntn-Nbhd-Assn-KC
[Map: Downtown Neighborhood Association of Kansas City]

Particularly for transit supporters in other cities considering a streetcar or large light rail transit (LRT) system, it’s instructive to look at the elements of this kind of project. A more recent report (March 7th) in the KC Business Journal provides an opportunity for this kind of examination, laying out the three main phases of the project.

At more than $46 million a mile, KC’s streetcar line will be far less costly than, say, a subway or monorail, or even many busways — but that per-mile price tag also buys a lot more than just the rail transit infrastructure, as we’ll see. First, let’s itemize the railway components themselves, some of which will occur over several of the phases:

• Streetcar rolling stock — to be selected, ordered, delivered.
• Tracks installation along Main Street from the River Market to Union Station.
• Rolling stock maintenance facility in the River Market to be designed.
• Underground utilities to be relocated.

That last item — relocating utilities — is not directly part of the rail infrastructure, but it’s a task that usually has to be done (although there are some ways to minimize or avoid it). In many cases, the utilities may have actually needed replacement for years, but the municipality or private utility owner holds off, hoping that the rail project will pick up the tab. There’s also wide divergence from city to city in terms of who the law specifies should be responsible for paying for such relocation — the agency sponsoring the rail project, or the utility owners.

Phase 1 (from 2013 until early 2014) will mainly focus on utility relocation and the construction of the maintenance facility. Utilities work will include:

• Opening trenches to remove and relocate utility lines.
• Suspending temporary overhead lines for temporary utility relocations.

According to the news report, this work will be done in three-block sections and taking two to eight weeks. “During the work, Kansas City residents can expect partial lane closings and temporary service interruptions.”

Work on the maintenance facility, lasting 12 to 18 months, will include:

• Clearing the site for the facility and starting construction of the building’s foundation.
• Commencing civil engineering work startup of actual shop construction.

Phase 2 (from late 2013 to late 2014) includes track installation (in pavement), station construction, and rebullding of streets and sidewalks. It’s debatable whether this last item, street and sidewalk reconstruction — routine for most urban rail projects — should be considered an indispensable component of the rail transit and assigned as a cost totally to the rail project.

To some extent, as with utilities, public works planners often realize that the streets and sidewalks need to be rebuilt anyway, and often wait to let the cost be picked up by the rail project. Also, these kinds of upgrades might be considered as more in the category of “urban amenities”, and some rail advocates argue they should be tallied separately as something like “urban renovation”.

On the other hand, it’s arguable that effective access to the new line requires good pedestrian facilities. Furthermore, for federal funding the Federal Transit Administration usually requires it (along with other amenities not directly essential to the transit operation, such as artwork at the stations).

In any case, both for track installation and the street/sidewalk reconstruction, the project schedule calls for closing “two city blocks … for three to four weeks to accommodate construction of the streetcar’s tracks and stops.” This will include:

• Removing existing pavement and sidewalks.
• Reconstructing sidewalks, curbs, and gutters.
• Installing railway hardware on track slabs with drainage facilities and special trackwork (switches, crossovers, etc.).
• Rebuilding existing curbs, gutters, and sidewalks near stations.
• Building concrete platforms and canopy foundations, and installing “amenities and finishes at the streetcar stops.”

As the Business Journal report indicates,

Construction of each station is expected to last three to four weeks. Track installation will require a 20- to 25-foot work zone and will close multiple lanes or entire sections of Main Street, depending on the width of the street at the work location.

Phase 3 (from late 2013 to late 2014), the final phase of construction, will focus mainly on the power system and traffic signals, with some replacement of street lighting (again, this last item may be one of those “urban amenity/renovation” elements not strictly essential to the urban rail project). There’s an advisory that “Temporary closures during non-peak hours are expected at each two-block section for the three to four weeks it will take to complete this phase of the work.” This last phase will include:

• Installing the overhead contact system (OCS) — i.e., the support poles and wiring for the electric propulsion system (this is often erroneously referred to as “catenary”, which is actually a somewhat heftier type of OCS; however, many streetcar lines and even some larger LRT lines use much simpler single-contact-wire OCS to minimize its visibility).
• Installing new traffic signals and street lighting (again, see the discussion above about “urban renovation” and whether the cost of these project elements should be assigned to the urban rail project).
• Installing power substations (these are just relatively small power booster units to maintain adequate voltage on the OCS, which tends to drop because of the resistance of the OCS wire).

“After construction is complete,” notes the Business Journal report, “the city expects to take four to six months for testing and startup work between late 2014 and early 2015.”

That, then, is what this relatively small KC urban rail project will involve. Hopefully, this information will be helpful to those of you contemplating similar projects for your own cities.